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Abstract

Traffic in wireless sensor networks (WSN) is commonly

created by sensor readings which can be modelled by var-

ious distributions as the occurrence of events triggers the

injection of packets. The Poisson distribution is a common

example for a widely used event distribution as many pro-

cesses (for example the arrival of customers or the dissemi-

nation of parasits) are known to be Poisson distributed. The

impact of such a packet injection model on sensor networks

and especially on the performance of misbehaviour detec-

tion systems is therefore of interest. In this paper we in-

vestigate the impact of the Poisson model and the constant

bit rate model on a misbehaviour detection system, namely

an artificial immune system (AIS). We state the hypothesis

that both models have no significant effect on the detection

rate. We examine the influence of the two models on the

detection performance and compare the results. We con-

clude that the differences between the two models show no

statistically significant effects on the detection performance

supporting our hypothesis. However, we observe that the

AIS had a significantly smaller false positives rate for the

Poisson model than for the CBR model.

1 Introduction

Traffic in wireless sensor networks (WSN) is commonly

created by sensor readings which can be modelled by var-

ious distributions as the occurrence of events triggers the

injection of packets. The Poisson distribution is a com-

mon example for an event distribution as many processes

(for example the arrival of customers or parts for manufac-

turing) are considered Poisson distributed. The impact of

such a packet injection model on the performance of misbe-

haviour detection systems is therefore an interesting issue,

especially as the number of companies using such networks

for logistics, production cycle maintenance, indoor security

or area surveillance is rising. Companies cannot afford to

accept losses due to malfunctioning systems, therefore such

networks have to be able to detect any malfunction not only

as fast as possible but also with high accuracy, which im-

plies having only a low level ratio of false alarms and a high

level ratio of true alarms. Sensor networks typically consist

of battery powered devices with limited computational abil-

ities and therefore using strong software cryptography to

secure communication channels is almost impossible. Due

to the latest developments of wireless communication pro-

tocols intended to be used with sensor networks (for exam-

ple the work of the ZigBee R© Alliance [17]) and the devel-

opment of radio modules with support of hardware based

AES-128 cryptography, unauthorised access to sensor net-

works is becoming more and more difficult. However sen-

sor nodes are not tamper proof, leaving possibilities to gain

access even to a secured network. As a result such networks

still have to deal with possible node misbehaviour. We be-

lieve that artificial immune systems are capable of detecting

misbehaviour within sensor networks independent from the

current traffic model. AIS are basically a variety of anomaly

detection systems derived from the human immune system.

The advantage of artificial immune systems in contrast to

protocol based security improvements is the universality of



the approach. An AIS tries to identify anomalies which are

not known to exist within the range of regular network be-

haviour. AIS are based on the self and non-self discrimi-

nation principle [1] and the continuous observation of the

system. By using the negative-selection principle [12] an

immune system is able to produce detectors which are able

to recognise only non-self characteristics. Drozda et al. [6]

evaluated the performance and usability of an artificial im-

mune system approach within a simulated ad-hoc network

using a constant bit rate (CBR) based traffic and concluded

that AIS are indeed useful for sensor networks. In this paper

we study the effects of the Poisson model (which better fits

event triggered traffic) on an artificial immune system and

compare to the results obtained when using the CBR model.

We examine the hypothesis that both models will show no

significant differences in respect to the AIS detection rate

as the system uses only observed traffic information to con-

clude whether a node is misbehaving or not.

The paper is structured into the following sections: first a

brief description of the functionality of an artificial immune

system is given, followed by a description of our experi-

mental setup and the parameters used. In section 4 the re-

sults obtained from the experiments and a comparison are

shown and in section 5 a brief overview of related and prior

work is given. Finally conclusions and future work are pre-

sented in section 6.

2 Artificial Immune System

Artificial immune systems are derived from the human

immune system and therefore several terms and descrip-

tions have been adopted from the biological perspective on

immune systems, of which the most important term is gene.

A gene measures network performance and thus is defined

by a characteristic based on the data traffic volume, the as-

sumed protocol behaviour or both (for example the num-

ber of complete MAC handshakes1 during a specific time

period). An antigen is an observation within a time win-

dow for a set of genes which can either be interpreted as an

self-antigen or a non-self-antigen. Another important term

is detector. A detector for AIS is a combination of dif-

ferent concepts based on known immune system methods

and models which are related to the detection of alien cells.

Detectors are defined as bit-sequences which are produced

by a negative-selection algorithm [12] and finally should

only match non-self antigens. A commonly used method

to match antigens with detectors is the r-contiguous bits

matching rule in which strings are equal if a common sub-

string of length r at the same position p exists [8].

A simple artificial immune system can be divided into a

1A MAC handshake is defined by the sequence of RTS, CTS, DATA

and ACK packets.

learning phase and a detection phase [9]. During the learn-

ing phase detectors are produced (using the available self

information) which will be used later in the detection phase

to discover misbehaviour indicators. On every node an in-

stance of the AIS is running, using the locally observed traf-

fic to create a self set, a detector set and the antigens nec-

essary to detect misbehaviour at its neighbours. There are

several extensions which allow adaptive learning and mat-

uration of detectors, thus avoiding the necessity of an in-

tensive self-set only learning phase. See [10], [2] and [9]

for more information on the different mechanisms and the

immune system in general.

2.1 Learning phase

Part of the human immune system is the creation process

of T-cells in B-macrophages and thymus which is partially

adapted to the learning process in artificial immune systems.

Using a pseudo-random process T-cells are created and cen-

sored by a negative-selection process. During this process

T-cells which bind to self are destroyed. Similar to the bi-

ological selection detector strings within AIS are produced

using a greedy strategy together with a pseudo-random gen-

eration process and tested against a self set [12].

It is possible that the selection process of an immune sys-

tem produces detectors which are able to detect self, due to

an incomplete self set during the selection process. Such

detectors can cause auto-immune reactions or in terms of

AIS false positives. A false positive is therefore defined as

a node which is detected as misbehaving while it is actually

performing within the regular range.

2.2 Detection phase

Using the censored T-cells the immune system is able

to detect alien cells. In artificial immune systems antigens

are created continuously for a specified time window (by

analysing the network traffic) and matched against the com-

plete detector set. If a matching detector is found, an im-

mune response is triggered (for example a timed exclusion

of the misbehaving node from routing paths). Detectors

which are found to be useful are marked as mature and can

cause an intense reaction at a lower activation threshold. In

contrast, detectors which are newer or less effective need

a higher activation threshold before causing any reactions.

AIS offer the possibility to throw away detectors which do

not prove to be useful, thus making space for new detec-

tors. This however should only be necessary if the space for

detectors is limited and the covering of the non-self set is

insufficient. There are several enhancements to the detec-

tor maturation process using mutation or other evolutionary

mechanisms. See [5] and [7] for more information on ad-

vances in artificial immune systems.



3 Experimental Setup

The purpose of our experiment was to measure the influ-

ence of the two packet injection models on the AIS detec-

tion performance, examining the hypothesis that an AIS of-

fers a reasonable detection rate independent from the used

packet injection model. The hypothesis is based upon the

fact that injection models could only differ, with respect to

the matching algorithm, in a total number of faults in an ob-

served time window, thus their distribution on a time scale

should therefore be not important. Similar to [9] a bit string

representation was chosen for self, non-self and detectors.

The matching rule was the r-contiguous bits matching rule

with r = 10. Detectors were produced using a negative-

selection strategy and tested against a priorly computed self

set. We used two scenarios with 10 fixed but randomly cho-

sen connections performing the CBR or the Poisson injec-

tion model. In each scenario we ensured that the average

hop count distance between two nodes was about 8 hops.

We chose these values as the underlying network topology

showed no connection problems with routes of length 8.

The number of connections was chosen as a tradeoff be-

tween a fast simulation and a reasonable network payload.

3.1 Scenario description

A Poisson and a CBR model using 10 connections were

created. The observed network traffic was evaluated accord-

ing to the described AIS approach. We have chosen the

same set of genes as in [6]. They cover a good range of traf-

fic properties which allows the AIS to detect misbehaviour.

We captured for every transmitted packet the IP header type

(UDP, 802.11 or DSR), the MAC frame type (RTS, CTS,

DATA or ACK), the current simulation time, the node ad-

dress, the next hop address, the global packet source, the

global packet destination and the packet size. These values

where used to compute the necessary genes as described be-

low in section 3.5. Each scenario was simulated using Glo-

mosim 2.03 (see [4]) 20 times with different seeds for the

Glomosim random number generator. We distributed the

simulation runs over 30 Linux based PCs (2 GByte RAM,

Pentium4 3 GHz).

3.2 Topology

We used a network topology consisting of 1718 nodes

which were placed in a 3000 m × 3000 m square plane us-

ing a snapshot of a random waypoint walk. Each node was

set to have a radio radius of 100m. We made no restrictions

to the graph connectivity, thus allowing isolated subgraphs.

See reference [6] for a picture of the topology and the rout-

ing paths.

3.3 Misbehaviour

We implemented a simple packet dropping misbehaviour

with a 10, 30 and 50% dropping probability (Sink and

source nodes were excluded from misbehaviour). We con-

figured 236 of our 1718 nodes to be malicious. Although

the number of malicious nodes seems relatively high only

one to three of them appeared per route as they were dis-

tributed randomly.

3.4 Simulation details

• Negative selection algorithm: random generation and

testing. Implemented in C++, compiled with GNU

g++ v4.0 with -O3 option.

• Input parameters: 1. r-contiguous bits matching rule

with r = 10. 2. Encoding: 5 genes each 10 bits long

= 50 bits. 3. Number of detectors {500, 1000, 2000}.

4. Misbehaviour level {10%, 30%, 50%} 5. Window

size 500 seconds; 28 complete windows over 4-hours

simulation time.

• CBR Injection rate: 1 packet/second. 14400 pack-

ets per connection were injected. Packet size was 512

bytes.

• Poisson Injection rate: λ = 1.0, meanArrivalExpec-

tation = 1 packet/second. Packet size was 512 bytes.

• Performance measures: detection rate, false posi-

tives, data traffic rate at nodes; values were produced

per simulation run and compared as arithmetic average

with 95% confidence intervals over all simulations for

each misbehaviour probability.

• MAC protocol: IEEE 802.11b DCF.

• Routing protocol: DSR.

• Other parameters: (i) Propagation path-loss model:

two ray (ii) Channel frequency: 2.4 GHz (iii) Topogra-

phy: Line-of-sight (iv) Radio type: Accnoise (v) Net-

work protocol: IPv4 (vi) Connection type: UDP.

3.5 AIS details

When defining a misbehaviour detection system several

observable factors have to be specified. For artificial im-

mune systems these factors are defined by genes. We de-

cided to observe two layers of the OSI Stack namely the

MAC and Routing Layer using the following set of genes:



MAC Layer:

#1 Ratio of complete MAC layer handshakes between two

communicating nodes si and si+1 and the RTS pack-

ets sent by si to si+1. If there is no traffic between

two nodes this ratio is set to ∞ (a large number). This

ratio is averaged over a time period. A complete hand-

shake is defined as a completed sequence of RTS, CTS,

DATA, ACK packets between si and si+1.

#2 Ratio of data packets sent from si to si+1 and then

subsequently forwarded to si+2. If there is no traf-

fic between two nodes this ratio is set to ∞ (a large

number). This ratio is computed by si in promiscuous

mode. This ratio is also averaged over a time period.

This gene was adapted from the watchdog idea in [13].

#3 Time delay that a data packet spends at si+1 before be-

ing forwarded to si+2. The time delay is observed by

si in promiscuous mode. If there is no traffic between

two nodes the time delay is set to zero. This measure is

averaged over a time period. This gene is a quantitative

extension of the previous gene.

Routing Layer:

#4 The same ratio as in #2 but computed separately for

RERR routing packets.

#5 The same delay as in #3 but computed separately for

RERR routing packets.

Each gene was encoded using an interval representation

of size 10 which was adopted from [14]. The correspon-

dending interval was marked by a single 1 within the 10

bit sequence. Antigens were produced by the concatenation

of all five genes and always checked against the complete

detector set.

4 Results

The task of detecting misbehaviour requires a compar-

ison of all computed detectors with the observed non-self

antigens. In our experiments a 500 second time window

was used to sample node traffic and to generate one antigen.

Thus the resulting number of time windows for 4 hours

simulated times was 28 per node. In order to avoid outliers

in our analysis we defined a detection threshold of 14 time

windows to mark a node as misbehaving. The evaluation

of the detection rate requires that the number of packets

forwarded by a node exceeds a certain threshold. If a

node lacks packets to forward in the learning phase, the

AIS’s ability to learn is limited. If it lacks packets to

forward during the detection phase and at the same time

wants to execute misbehaviour, the impact of misbehaviour

is weakened. As a result we therefore performed our

evaluation using different forwarding threshold values for

packet forwarding (minValue = 500, 1000, 2000 and 4000)

and considered only those nodes which were above the

given thresholds.

Definition: The detection rate is defined as dr =
nd

nm
,

where nm = the number of misbehaving nodes to detect,

and nd = the number of correctly detected nodes.

Definition: The false positives rate is defined as

fpr =
nfp

nd+nfp
, where nfp = the number of incorrectly

detected nodes, and nd = the number of correctly detected

nodes.

We expected the detection rate and the false positives

rate to be similar for both models. The graphs in figure

1 show the average detection2 results and the deviation

ratio for CBR and Poisson packet injection using 500

detectors. While the detection rate is about 10% higher for

the Poisson packet injection with a low packet threshold of

500 packets, the ratio for the CBR model seems to be better

for higher thresholds. In order to verify the hypothesis that

both models show no significant differences we calculated

a 95% confidence interval for all three misbehaviour

probabilities and evaluated the deviation ratio for both

models.

Definition: The deviation ratio is defined as dvr =
dv

dr
,

were dv = the deviation value of the 95% confidence inter-

val, and dr = the detection rate for a specific misbehaviour.

Both CBR and Poisson model show a similar deviation

range, with the values for the Poisson model being slightly

lower, suggesting that the Poisson model results in a bet-

ter performance than the CBR model. However the devi-

ation ratio (shown in figure 1 (c) and (d)) for both models

is similar. We therefore conclude that the AIS detection

performance is indeed not influenced by the chosen traffic

model as the detection rate values for the CBR and Poisson

model are within in the range of the calculated deviation

ratio. We also computed the detection rate and the false

positives rate for 2000 detectors (see figure 2). Similar to

the results with 500 detectors the Poisson model shows a

detection rate which is about 2% to 10% higher than the

rate of the CBR model. Both models show again a simi-

lar deviation ratio supporting the hypothesis that the packet

injection model has no significant impact on the detection

rate. However the false positives rate is up to 45% lower

(worst case) as in the CBR experiment, which is an inter-

esting result (see figure 2 (c), (d)). We expected the false

2We used the arithmetic average over all simulation runs to calculate

the detection rate.
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Figure 1. Detection rate for CBR (a) and Poisson (b), deviation ratio for CBR (c) and Poisson (d) for

500 detectors.
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Figure 2. Detection rate for CBR (a) and Poisson (b), false positives rate for CBR (c) and Poisson (d)

for 2000 detectors.

positives rate to be at most 10% better than with the CBR

model since we expected the models to have a similar in-

fluence on both the detection rate and the false positives

rate. The results for the Poisson model suggest that due

to the different packet injection model and the resulting dif-

ferent arrival time gaps, the observed traffic during the de-

tection phase differed more in cases of misbehaviour and

hence looked more similar to the detectors of the detector

set. This assumption is based upon the fact that false posi-

tives are described by antigens which have to be similar to

at least one detector and therefore become detected by the

r-contiguous bits matching rule. Hence the real malicious

antigens were more dissimilar to normal antigens as in the

CBR experiment.

5 Related Work

Hofmeyr and Forrest presented in 1999 a paper about

the usage of an immune system inspired misbehaviour de-

tection system. Their artificial immune system was de-

signed to work on a wired network observing TCP/IP con-

nections. The pattern matching was based on a r-contiguous

bits matching with r = 12 bits. The antigen and detector

length was 49 bits [9].

Sarafijanovic and Boudec presented in [14] and [15] an ar-

tificial immune system based misbehaviour detection sys-

tem designed for wireless ad-hoc networks. The approach

was tested using Glomosim to simulate a network of 40 mo-

bile nodes (1 m/s) of which 5 to 20 nodes were misbehav-

ing. They defined four genes to be used to capture local be-

haviour at the OSI network layer. The detection rate of the

presented system was about 55%. They also used a danger

signal which allows nodes to inform neighbours on the rout-

ing path about misbehaviour. This interaction was adopted

from the results by Aickelin et al.[3].

Aickelin et al. have been working on artificial immune sys-

tems since 2003 in an interdisciplinary project called dan-

ger theory. In [2] and [3] they introduced work showing

links between intrusion detection systems and artificial im-

mune systems. They also introduced a danger signal ap-

proach allowing nodes to judge the misbehaviour informa-

tion and presented work on adaptive learning mechanisms.

Drozda et al. [6] showed that artificial immune systems can

be applied to sensor networks having only low computa-

tional costs. The detection rate of the introduced AIS is

higher than the one presented by Sarafijanovic and Boudec,

as the authors use a static ad-hoc network of 1718 nodes

with 10 CBR connections instead of a mobile network.

To our knowledge the Poisson traffic model and the impact

of injection distributions on the AIS performance have not

been studied before.



6 Conclusions

In this paper we examined the influence of two differ-

ent packet injection models on the misbehaviour detection

performance and provided the hypothesis that the two dif-

ferent packet injection models have only a small influence

on the detection system. We conclude that the measured

differences of the examined traffic models are not statisti-

cally significant and therefore conclude that the hypothesis

is true. We are glad to observe that AIS are indeed capable

of handling different traffic models. For both models the

AIS accomplished a detection ratio above 70% for the mis-

behaviour rates 30% and 50%. The Poisson based false pos-

itives rate was unexpectedly up to 45% lower (worst case)

than the CBR based rate, which is an interesting result. We

are going to investigate the reason for that further.

We are currently working on a simulation experiment using

50 (100) fixed but randomly chosen connections with a dif-

ferent variety of misbehaving nodes. We are going to inves-

tigate more packet injection models and parameters in order

to test the AIS using different, more complex attack pat-

terns. The intention of these experiments is to verify which

genes should be part of an AIS in general and which are in-

dependent from the tested packet injection models and are

therefore providing good detection results.

Additionally we are working on a sensor node implementa-

tion based on Crossbows [16] mica2 mote not only to prove

that an AIS is indeed preferable for sensor networks but also

to test and verify the simulation results using realistic data

collection scenarios.

In our experiments we did not use any advanced clustering

methods for data evaluation, therefore these results could

still be significantly improved.
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