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Abstract

The goal was to test performance and suitability of Artificial immune systems
for detecting misbehavior in ad hoc wireless networks. We have used a real-
istic simulation setup consisting of a medium sized ad hoc wireless network.
Additionally, we have tested scalability of this approach using synthetic input
sets.

1 Introduction and Motivation

Ad hoc wireless networks lack a centralized authority that controls the flow of
packets. Instead, each node in an ad hoc network serves as a routing device. Each
node is able to forward packets to its neighbors1, and vice-versa each node is able to
receive packets only from its neighbors. Node movement is allowed, nodes can also
be switched off and on at any time. Such networks are extremely vulnerable to user
misbehavior. Since nodes within an ad hoc network are expected to have limited
computational power and be battery powered, a system that is going to protect them
has to be lightweight. Additionally, it has to be adaptive as ad hoc networks are
expected to operate autonomously with no or spare maintenance. Classical intrusion
detection approaches, many of which are based on intrusion signatures, are therefore
not suitable for such a task.
Artificial immune systems (AIS) on the other hand seem capable of handling such
demands. AIS are inspired by the Human immune system (HIS) using selected fea-
tures of this defense system. The basic feature of an HIS is the ability to discriminate
between self and non-self antigen;2 a non-self antigen is anything that can initiate
an immune response; examples are a virus, bacteria, or splinter. The opposite to
non-self antigens are self antigens; self antigens are human organism’s own cells. In
case of ad hoc networks non-self is any kind of user behavior that impacts the net-
work in a negative way. The purpose of our simulation based experiments is to show
that AIS are a suitable approach for detecting misbehavior in ad hoc networks.

∗This work was supported by the German Research Foundation (DFG) under the grant no.
SZ 51/24-1 (Survivable Ad Hoc Networks – SANE).

1Nodes that lie within radio range of the sending node.
2Self and non-self in short.



2 Learning in Artificial Immune Systems

The process of T-cells maturation in thymus is used as an inspiration for learning
in AIS. T-cells are covered by receptors that are able to bind antigens. The creation
of T-cells (detectors) in thymus is a result of a pseudo-random process. After a
T-cell is created, it undergoes a censoring process called negative selection. During
negative selection T-cells that bind self are destroyed (random generate and test).
Remaining T-cells are introduced into the body. The recognition of non-self is then
done by simply comparing T-cells that survived negative selection with a suspected
non-self. It is possible that the self set is incomplete, while a T-cell matures (to-
lerization period) in the thymus. This leads to producing T-cells that should have
been removed from the thymus and can cause an autoimmune reaction, i.e. it leads
to false positives.

3 Experimental Setup

We represent self, non-self and detector strings as bit-strings. The matching rule
employed is the r-contiguous bits matching rule. Two bit-strings of equal length
match under the r-contiguous matching rule if there exists a substring of length
r at position p in each of them and these substrings are identical. Detectors are
produced by means of negative selection when detectors are created randomly and
tested against a set of self strings. Similar to [2] we have collapsed different sorts of
T-cells into a single entity called detector.
Growing and shrinking of detectors: We implemented two enhancements to negative
selection. These were motivated by the results of Ji and Dasgupta in [1]. In each
case, a range for the r parameter is chosen, i.e. r = {r1, r2, ..., ri, ri+1, ..., rk}, k

is the size of the range, ri+1 = ri + 1. The binding ability of a detector doubles
when r is set to ri−1. This range can be chosen experimentally as in our case, or a
heuristic can be used. In the first enhancement, when a valid detector was produced,
i.e. a detector that matches no self string, we tried to increase his binding ability
by decrementing r. This requires that the initial value of r is chosen at the upper
end the range. We keep decrementing r until we either reach the lower limit of the
range or the detector matches a self string. In the latter case we used the last r that
produced a valid detector. In the second enhancement we try to decrease the binding
ability of a detector. The initial value of r is set to the lower limit of the range, then
either the detector is valid in which case we keep it, or in other case we decrease
its binding ability by choosing the next larger r value from the range. If this new
larger value produces a valid detector, we keep it, otherwise we keep increasing its
value until we reach the upper limit of the range. If r at the upper limit of the range
does not produce a valid detector then this detector is rejected. These two ideas
can be concisely described as growing and shrinking binding (matching) power of
detectors. In [1] only growing of detectors is considered; their setup uses real-valued
detectors and not bit-strings as in our case. Moreover, their experiments are not
done in the context of wireless networks.
We have undertaken two series of experiments. The first series of experiments uses
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1. Negative selection algorithm: random generate and test.

2. Input parameters: 1. r-contiguous matching rule with r = {7, 12, 16}. 2.
Encoding: 5 genes each 10 bits long = 50 bits. 3. Number of detectors 500. 4.
Window size 500 seconds.

3. Performance measures: real time to compute detectors, number of iterations
to compute detectors, detection rate, rate of non-valid detectors, number of
duplicate detectors and their arithmetic averages.

4. Network topology: Snapshot of movement modeled by random waypoint
mobility model i.e. it is a static network. There were 1,718 nodes. The area was
a square of 3km×3km.

5. Number of connections: 10 connections.

6. MAC protocol: IEEE 802.11b DCF. Routing protocol: DSR.

7. Other parameters: (i) Propagation path-loss model: two ray (ii) Channel band-
width: 2 Mb (iii) Channel frequency: 2.4 GHz (iv) Topography: Line-of-sight
(v) Radio type: Accnoise (vi) Network protocol: IP (vii) Connection type: UDP.
The transmission range of transceivers was 100 meters.

8. Simulator used: GlomoSim 2.03; hardware used: several Linux (SuSE 10.0)
PCs with 2GB RAM memory and Pentium 4 3GHz microprocessor.

9. Injection rate: 1 packet/second. 43,200 packets per connection we re injected.
Packet size was 512 bytes.

10. The simulation time was 12 hours.

Figure 1: Parameters used in Experiment 1.

a synthetic static ad hoc network. The second series of experiments uses purely
synthetic input data.

Definitions of input and output parameters: The input parameters for our
experiments were: r parameter for the r-contiguous matching rule, ratio of the self
set size and non-self set size RS , and the (desired) number of detectors ND.3

The performance (output) measures were arithmetic averages (and the associated
standard deviations) of real time to compute detectors, number of iterations to com-
pute detectors (number of random tries), detection rate, rate of non-valid detectors,
number of false positives, number of duplicate detectors (detectors that were ran-
domly produced but are identical). The detection rate dr is defined as dns

ns
, where

dns is the number of detected non-self strings and ns is the total number of non-self
strings.
Experiment 1: The purpose of this experiment was to capture “self” and “non-
self” packet traffic in a synthetic static ad hoc network and test whether using an
AIS we are able to recognize non-self, i.e. misbehavior. We only considered packet

3It may not always be possible to compute a given number of detectors for a predetermined r.
This happens when (smaller) r causes that almost all detectors and self strings match under the
r-contiguous matching rule. We have set the maximum number of random tries to 107 in order to
prevent the negative selection process to loop forever.
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traffic at the MAC and routing layer. The set of genes that represent certain chosen
properties of packet traffic in wireless networks was chosen so that a thorough
functionality test of our AIS is possible. The set is not complete, i.e. it does not
allow to recognize a large range of misbehavior activities, in contrary, the idea was
to choose a set of a modest size. In the future we plan to undertake a more complex
simulation experiments with packet traffic information ranging all over the OSI
protocol stack.
In this experiment we used a static ad hoc network. The topology was determined
by a snapshot of 1,718 mobile nodes moving in a square area of 3×3km as prescribed
by the random waypoint mobility model. We have used 10 CBR (Constant bit rate)
connections. The connections were chosen so that their length is about 8 hops and
so that these connections share some common intermediate nodes. For each packet
received or sent by a node we have captured the following information: IP header
type (UDP, 802.11 or DSR in this case), MAC frame type (RTS, CTS, DATA, ACK
in the case of 802.11), simulation clock, node address, next hop destination address,
data packet source and destination address, and packet size. Let us assume that the
routing protocol finds for a connection the path ss, s1, ..., si, si+1, si+2, ..., sd from
the source node ss to the destination node sd, where ss 6= sd. Motivated by [3] we
have used the following genes to capture some aspects of MAC and routing layer
traffic information:

MAC Layer:

#1 Ratio of complete MAC layer handshakes between nodes si and si+1 and RTS
packets sent by si to si+1. If there is no traffic between two nodes this ratio
is set to ∞ (a large number). This ratio is averaged over a time period. A
complete handshake is defined as a completed sequence of RTS, CTS, DATA,
ACK packets between si and si+1.

#2 Ratio of data packets sent from si to si+1 and then subsequently forwarded
to si+2. If there is no traffic between two nodes this ratio is set to ∞ (a large
number). This ratio is computed by si in promiscuous mode. This ratio is also
averaged over a time period. This gene was adapted from the watchdog idea
in [4].

#3 Time delay that a data packet spends at si+1 before being forwarded to si+2.
The time delay is observed by si in promiscuous mode. If there is no traffic
between two nodes the time delay is set to zero. This measure is averaged over
a time period. This gene is a quantitative extension of the previous gene.

Routing Layer:

#4 The same ratio as in #2 but computed separately for RERR routing packets.

#5 The same delay as in #3 but computed separately for RERR routing packets.

The above mentioned time period is 500 seconds.

Encoding of self and non-self antigens: Each gene value was transformed in a 10-
bit signature where each bit defines an interval4 of a gene specific value range. We

4The interval encoding of genes is adapted from [3].
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1. Negative selection algorithm: random generate and test, random generate and
test with growing detectors, random generate and test with shrinking detectors.

2. Input parameters: 1. r-contiguous matching rule with r = {6, 7, 8, 9, 10}. 2.
Number of detectors 25–600 in 25 increments. 3. Size of self population RS:
30%, 50%, 70%, 90% of 1,000.a Size of non-self population: app. 2% chosen
from the complement to the self set i.e. there were 20± 5 non-self bit-string to
be detected.

3. Performance measures: real time to compute detectors, number of iterations
to compute detectors, detection rate, rate of non-valid detectors, number of
duplicate detectors and their arithmetic averages.

4. Number of runs: 20 for each combination of input parameters.

5. Non-self generation method: chosen randomly and uniformly from the comple-
ment to the self set.

6. Simulation time: until the desired number of detectors is computed and tested.

7. Encoding: self and non-self strings were encoded as 30-bit bit-strings.

8. Hardware used: several Linux (SuSE 10.0) PCs with 2GB RAM memory and
Pentium 4 3GHz microprocessor. Implementation in C++; compiled with GNU
gcc/g++ v4.0.

aThe absolute size of the self set was 1,000 bit-strings. RS was set to either of these
values {30%, 50%, 70%, 90%}. In an interval (0.0, 100.0) we have chosen three mid-points
{15.0, 45.0, 75.0}. If the ratio is 30% it means that the 1,000 self string were randomly (uni-
formly) chosen from three intervals {15.0 ± 5.0, 45.0 ± 5.0, 75.0 ± 5.0}.

Figure 2: Parameters used in Experiment 2.

created self and non-self antigen strings by concatenation of the defined genes. Each
self and non-self antigen has therefore a size of 50 bits. The interval representation
was chosen in order to preserve locality information and thus improve efficiency of
the r-contiguous bits matching rule.
Constructing the self and non-self sets: We have randomly chosen a 500-second win-
dow in our 12-hour simulation. In this 500-second window a self antigen is computed
for each node. Misbehavior was modeled as random data packet dropping; we have
randomly chosen 236 nodes and these were forced to drop {10, 20, 30, 50%} of data
packets (the impact of this misbehavior is smaller than it might appear because
many of these 236 nodes had no data packets to drop). We have avoided the first
minute in the simulation during which the routing protocol tries to establish valid
routes by flooding the network. We have run these experiments for different values
of the r parameter for r-contiguous bits matching and for different desired numbers
of detectors. The parameters for this experiment are summarized in Figure 1.
Experiment 2: The purpose of this experiment was to test scalability of AIS based
on the negative selection process. The experimental setup is summed up in Figure 2.
Due to lack of space, we leave out detailed experiment description; the results are
discussed in the next section.
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4 Results

Experiment 1: Results can be summed up as follows: (i) The effect of misbehavior
on the network is hard to predict. Due to misbehavior, new routes will get estab-
lished by the routing protocol. The consequence of this is detected anomaly at nodes
that do not misbehave; this problem is solved in e.g. [3] by introduction of a danger
signal - only detected anomaly that coincides with a danger signal being emitted
is classified as misbehavior. (ii) Increasing the r parameter increases the detection
reliability. (iii) To produce a suitable set of genes is a lengthy process requiring
plenty of experimentation; to automate this process will require formal analysis of
communication protocols.
Experiment 2: Results are as follows: (i) There is a sharp phase transition when
producing detectors with a given r parameter; as r becomes smaller producing
detectors becomes quickly impossible. (ii) The detection rate rises quickly with the
desired number of detectors. (iii) Real time needed to compute detectors is feasible;
we have obtained a wireless sensor kit from Crossbow in order to test computational
feasibility also on smaller devices. (iv) Growing and shrinking detectors does not
offer any advantage as compared to uniformly distributed detectors (in contrast
to [1]).

5 Conclusions

The purpose of our experiments was to verify whether misbehavior detection based
on AIS is a viable approach. The results seem to hint that this is indeed the case.
Based on our experimentation we believe the most important challenges of any AIS
based approach are: (i) constructing a suitable set of genes, (ii) implementation of
a danger signal mechanism.
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